Skip to main content

Your submission was sent successfully! Close

Thank you for signing up for our newsletter!
In these regular emails you will find the latest updates from Canonical and upcoming events where you can meet our team.Close

Thank you for contacting us. A member of our team will be in touch shortly. Close

  1. Blog
  2. Article

Carmine Rimi
on 12 August 2019

Digest #2019.08.12 – The Kubeflow Machine Learning Toolkit


  • Kubeflow — a machine learning toolkit for Kubernetes – An introduction to Kubeflow from the perspective of a data scientist. This article quickly runs through some key components – Notebooks, Model Training, Fairing, Hyperparameter Tuning (Katib), Pipelines, Experiments, and Model Serving. If you are looking for a quick overview, give this article a go. Here’s a key diagram from the article:
  • Why is it So Hard to Integrate Machine Learning into Real Business Applications? – For teams just getting started, getting a trained model with sufficient accuracy is success. But that is just the starting point. There are many engineering and operational considerations that remain to be done. There are components that need to be built, tested and deployed. This post presents a real customer AI-based application, explaining some of the challenges, and suggests ways to simplify the development and deployment.
  • Further afield – Techniques to improve the accuracy of your Predictive Models – a look at few techniques to improve the accuracy of your predictive models. The code base is in R, but the principles are applicable to a variety of code bases and algorithms.
  • Use case spotlight – https://www.technologyreview.com/s/614043/instead-of-practicing-this-ai-mastered-chess-by-reading-about-it/. Instead of practicing, this AI mastered chess by reading about it. The chess algorithm, called SentiMATE, was developed by researchers at University College London. It evaluates the quality of chess moves by analysing the reaction of expert commentators. These learning techniques could have many other applications beyond chess – for instance, analysing sports, predicting financial activity, and making better recommendations.

Related posts


Andreea Munteanu
17 March 2021

Kubeflow operations guide

Ubuntu Article

Operating MLOps stacks alike Kubeflow in an increasingly multi-cloud world will be a key topic as this market and Kubernetes adoption grow. Kubeflow operations webinar To discuss this topic, Canonical is holding a live webinar next week, on 23rd of March, 5PM UTC. Besides the key points listed below, the webinar will also have a ...


Rui Vasconcelos
8 March 2021

Latest community videos

Ubuntu Article

MLOps community jewels The MLOps community continues to grow and gift us with great content and discussions around the topic! Here are a couple of interesting discussions – a long one (1h) about Kubeflow, feature stores, and other platforms in the MLOps space, and a short one (3 min) on how to manage dependencies: Sneak ...


Andreea Munteanu
22 February 2021

Still figuring out what is Kubeflow?

Kubeflow Article

Kubeflow has become quite popular in the MLOps community as the tool that enables data science teams to automate their workflows from data preprocessing to model deployment on Kubernetes. However, with it’s made of many pieces, and while it keeps evolving, how can you effectively start using? Learn Kubeflow from online courses Started by ...